Maze Solving Robot

Line following maze solver

Akash Dhasade, Saket Joshi

INDIAN INSTITUTE OF TECHNOLOGY, TIRUPATI

GITHUB.COM/

The algorithm was developed as a part of preparation for the maze rover competition held at IIT
Madras on January 1, 2017 by the members of team Neutrinos which stood first in the competition.

First release, July 2017

1.1
1.2
1.3

2.1

2.2
221
222

23

24

24.1
242
243

25
2.6
2.7

3.1

'Contents

-

Infroduction

Problem Statement

Maze varieties and Existing Algorithms
How to read this book?

Prerequisites for the Algorithm
Getting the tools ready

Directions

Defining directions
Updating direCtions

The Coordinate System

Nodes

Node definifion 0 e
Node CharacCteristiCs oo
Matching Nodes

The Returning Variable
An Example

Conclusion

The algorithm

Running the algorithm

15

3.2
3.3

4.1

4.2
4.2.1
422
4.3

4.4

4.4.1
4.4.2

The Optimal Path
Pseudo Code

Gathering the materials

The bot design

IRIN-front design
IR-centered design

Configuring the IR sensor array

Teaching bot to take turns

LEFT-TURN and RIGHT-TURN . . oo
U-TURN o

23
23

1.1 Problem Statement

A line maze is usually a black line on a white background or it could also be a white line on a black
background. But in this book, black lines on white background will be used. The problem of maze

END

START

O

Figure 1.1: An example Maze having black lines on white background

solving comprises of two steps:
1. The first step is to drive through the maze and search for the finish where the bot starts from
the marked start position. The finish is a characteristic black portion as shown in Figure 1.1.
2. In the second step, the bot is again placed at the start position, but this time the bot takes the
optimal path to the finish avoiding dead ends and unnecessary paths.

6 Chapter 1. Introduction

Maze varieties and Existing Algorithms

The problem of maze solving is not as trivial as it seems and there have been many attempts to
discover the best algorithms for solving mazes. But there is no such universal algorithm which
guarantees the most optimal path though we have algorithms that are quite close to optimal. Graph
traversing is an art in itself and we have DFS and BFS algorithms which are widely used for
traversing graphs. Only difference between writing code for normal BFS or DFS and writing code
for solving mazes is that in the earlier case graph is given as input whereas in the later we discover
the graph as we traverse it in real time.

Though the problems are slightly different, the idea is still the same. The main crux lies in the
looped and un-looped mazes. An instance of looped maze is shown in Figure 1.1. By loops we simple
mean that the maze circles around some node, simply put there is a cycle in the maze. Interestingly
when the mazes are not looped, we have very simple algorithms like LEFT-HAND-ON-THE-WALL
which works in all cases and gives the optimal path. You can learn more about this algorithm
following this link: http://www.instructables.com/id/Maze-Solving-Robot/. But as we
said looped mazes are more complicated to solve. Our objective in this book will be to built a full
fledged robot from scratch and understand and implement the algorithm which can solve looped
mazes.

How to read this book?

Through out this book, we have made our best attempt to make you understand the algorithm. It is
suggested to read the book on the order. We also provide exact code snippets alongside.

Chapter 1 introduced you to the problem of maze solving. In Chapter 2, we move to the
prerequisites for the actual algorithm. We first give you a list of variables and methods that we
define in our code and what each of them will be used for. We proceed with defining directions,
understanding the calibration of coordinate system, then defining nodes, understanding the returning
variable and finally we end with an example that illustrates each of the things defined above.

Chapter 3 puts forth the exact algorithm in a very unconditional way. Before stating the pseudo
code, we do a run of algorithm on an example maze, show you how to take the optimal path and
finally we state the pseudo code.

Chapter 4 is all about designing the bot. We start with the materials required and different bot
designs. We then tell you about the configuration of IR sensor array and end the chapter different
ways of taking turns.

With this, you will be a PRO in maze solving. We expect it to be an interesting journey, have
fun!

http://www.instructables.com/id/Maze-Solving-Robot/

2.1 Getting the tools ready

We define a whole bunch of variables and methods which will ease our way to the real algorithm.
Here’s the full list along with the explanation for each variable and function that we defined.

Declaration Explanation
cur_x Current x coordinate of the bot
cur_y Current y coordinate of the bot
returning Set to true when the path does not lead us to finish
ptr One plus number of nodes visited and remembered till that point of time
line Current position of bot on the line
curr_time Holds the time returned by millis()
prev_time Holds the time returned when millis() was previously called
time_diff Holds difference between two time defined earlier
bot_dir Current bot direction
sensor [5] Holder for 5 pins of sensor
turning Set to true when bot is turning, false otherwise
junction_var Used to identify a junction
left_path_var Used to identify the existence of a path in left direction
right_path_var Used to identify the existence of a path in right direction
blank_var Used to identify dead ends
finish_var Used to identify finish point
left_path Set to when a path in left direction exists
right_path Set to when a path in right direction exists
struct Node A data structure for node

Table 2.1: This table describes the methods and variables that will act as a tool kit for the algorithm.
Column 1 gives declarations and Column 2 gives you the purpose of each variable or function.

Chapter 2. Prerequisites for the Algorithm

Declaration Explanation
paths[4] Denotes existence of paths pertaining to a node
vpaths [4] Keeps track of visited paths pertaining to a node
back_path Holder for back path of a node
X_cor x coordinate of node
y_cor y coordinate of node
kp, kd and ki Calibration variables for PID algorithm
loop() Main loop of arduino code
act() Method to take decisions at junctions, turns and dead ends
node () Method called by act() to take decision when a junction is hit

choose_path()
take_return_path()
match_cur_node()
unvisited(ptrl, ptr2)
get_coords()
record_node
finish()
get_paths ()
readLineandgeterror ()
followline_pid()
brake ()
uturn()
turn_left ()
turn_right)
stick_to_line()
left_forward()
left_backward()
right_forward()
right_backward()

Helper method to choose path at a node
Method to turn in appropriate direction based on return path
Determine whether current node has been visited previously
Helper method to check existence of unvisited paths from ptr 1 to ptr 2
Updates curr_x and curr_y
Define and store a new node
Stops the bot when on finish point
Helper method to determine paths from bot position
Updates line variable based on IR sensor values
Implements PID algorithm
Defines brake for bot
Defines the U-turn for the bot()
Defines the left-turn for the bot()
Defines the right-turn for the bot()
Helper method to correct bot position
Helper method to set rotation of left wheel in forward direction
Helper method to set rotation of left wheel in backward direction
Helper method to set rotation of right wheel in forward direction
Helper method to set rotation of right wheel in backward direction

Table 2.2: Table 2.1 continued

This is all about variables and methods that you need to know. You can always refer to this table
when in doubt about what the methods does or what the variable indicates.

Directions
Defining directions

The direction which the bot faces when kept at the start point is referenced as direction O or north.
The remaining directions are defined accordingly in the clockwise sense. Figure 2.1 gives two
examples. These directions are absolute and remain same throughout the time. We reference the
paths pertaining to other nodes according to this convention which gets defined at the start point.

Updating directions

We defined bot_dir in section 2.1, recall that it denotes the current direction. We must update bot_dir
after every turn we take. Table 2.3 describes the same. Suppose the bot is pointing in direction 3, and

2.3 The Coordinate System 9

O I
L DN3W25

North

Figure 2.1: Directions are defined with respect to position of bot when placed at start point.

Turn New direction
Right turn ((bot_dir+1)%4)
Leftturn ((bot_dir+3)%4)
U turn ((bot_dir+2)%4)

Table 2.3: This table describes the new bot direction after each turn in terms of current bot direction.

takes a right turn, the new direction will be (3+1)%4 which is 0. It is easy to infer that the formulas
above give the correct direction.

The Coordinate System

Each node is uniquely defined by it’s x and y coordinates. We have many ways of keeping track of x
and y coordinates as we traverse the maze. One of it could be measuring the number of rotations of
the wheel so that we keep track of the exact distance traveled by the bot. This is a rather easy way
but comes at the cost of additional sensor in the bot design. So we adopt another way to calibrate the
coordinate system. The idea will surprise you at first sight.

We use the method named millis (), a method provided by standard library of Arduino.The
description of millis () goes as:

millis () : Returns the number of milliseconds since the Arduino board began running
the current program.

bot_dir New coordinates
0 cur_y + = time_diff
1 cur_x + = time_diff
2 cur_.y —= time_diff
3 cur_x — = time_diff

Table 2.4: Updating x and y coordinates of the bot after every call tomillis () based on bot_dir

10 Chapter 2. Prerequisites for the Algorithm

We know that distance o< time, meaning the distance traveled by the bot from one node to another
is proportional to the time taken by the bot to do so assuming the bot travels with constant speed
which is a good practical assumption. We callmillis () every time we take a turn or hit a node and
update current X and y coordinates. This can easily be accomplished by keeping track of the result of
previous call tomillis() as variable prev_time and current call as curr_time. The difference
between the two times gives you the distance traveled by the bot since the previous turn was taken or
a node was detected where we also updated the cur_x and cur_y. The bot coordinates that must be
updated at each call can be easily decided by looking at the current bot direction. Table 2.4 illustrates
the same.

The bot begins facing direction 0 as we defined in section 2.2. Initially cur_y and cur_x are
zero. Suppose that the bot hits a node after going straight from start point. Yes, the y coordinate
of bot must be increased. Since the bot is still facing direction 0, as per table 2.4, we increase
cur_y. Next suppose we take a left turn at this node, so bot is now facing direction 3. We go
straight and hit another node. We update the coordinates once again. This time the x coordinate
must be decreased since the bot took a left turn at previous node. Glance at the table and infer
that we do the same!

Nodes
Node definition

Not a node

Figure 2.2: Some examples of Nodes and non Nodes.

We define any junction having strictly more than two paths as a node.This is because only those
junctions with more than two paths allow us to make a decision about the path we need to choose
next. Ex. For the node on the left, we have to take a right turn when we reach the corner, but for the
one on the right we can choose to turn left or right.

Node characteristics

e We reach a node through some path, we call it the back path of that node which is defined as a
new variable int back_path. We declared it as an integer so that it holds the absolute value
of direction: 0,1,2 or 3.

e For each node, we could have all four paths or some of the paths may not exist. We choose to
represent the available paths for a node in a bool array named paths of size 4. With reference
to section 2.2 describing directions, the array indices (starting from 0) represent the directions:
0 for North, 1 for East and so on.

2.4 Nodes 11

bool paths[4] = { false };

So if there exist paths in all four directions, we set them all to true. If there exists a path in
direction 1 or East, we set paths[1] = true.

e As we explore the node, we will be choosing some path to travel while the other paths will
still be unvisited. So we need another bool array of size 4 to allow us to remember which
paths corresponding to that node have been visited and which are unvisited.

bool vpath[4] = { false };

It is obvious that only the paths that exist for a particular node will be marked as visited or
unvisited. Initially there are no available paths for a node and all of them are unvisited (they
do not exist actually) so everything is set to false.

e A node is uniquely defined by its x and y coordinates. So we have:

int x_cor, y_cor;
Hence the overall node defined as a struct goes as:

struct Node{
bool paths[4]= { false };
bool vpath[4]= { false };
int x_cor,y_cor;
int back_path;

} nodes[50];

Notice that we have declared an array of size 50 of type struct Node along with the Node definition.
This will act as a data structure for storing all nodes that we visit assuming maximum number of
nodes would not be more than 50. You can increase it depending on the size of maze. That was all
that you need to know about nodes.

Matching Nodes

Nodes can be matched by matching their x and y coordinates by practically testing and finding out
the epsilon value which works well such that:

abs(nodel.x_cor - node2.x_cor) < epsilon &% abs(nodel.y_cor - node2.y_cor) < epsilon

We introduce you to ways in which a node gets matched with previously visited node. It is based on
the paths that we take. Understanding these two cases is particularly important to understand the
actual algorithm because our decisions at the nodes will be based on these two cases. We call them
the RETURN-KNOWN case and RETURN-UNKNOWN case.

1. RETURN-KNOWN
We revisit the node via a path which we took earlier. Hence the name -KNOWN. We set
returning = true in this case. You can refer to section 2.1 to recall what returning
variable denotes though it will be explained later in detail in section 2.5.

2. RETURN-UNKNOWN
We revisit the node via a new path. Hence the name -UNKNOWN. We set returning =
false in this case. This is because this path was not taken in first place, it so happened that
the maze made us take this path looping around somewhere ahead along the path we took
earlier. More in detail in the next section.

12 Chapter 2. Prerequisites for the Algorithm

The Returning Variable

This might be the most difficult part to understand but we will try our best to get you through this.
We define a new variable

bool returning = false;

This will be a global variable in our code. As the name suggests, we set it to true when we are
returning , but returning from where? You will come to know in the next few lines. What returning
variable simply tells us is that the corresponding path pertaining to this revisited node does not
lead us to finish, so we can actually forget that there existed such a path pertaining to this node. In
other words we can now continue the search taking other unvisited paths pertaining to the node. We
consider two cases when the returning variable is true.

i

T:I:I: You take a U-turn at
the dead end.
ﬁ 1

oM
T

25

Figure 2.3: Illustration of U-TURN case.
e BACK-PATH

The algorithm is all about taking appropriate decisions at every node. Many a times we
will come across a situation where all paths pertaining to the node will be visited. Simply put,
even after exploring all paths pertaining to the node we couldn’t find finish on any of the paths
and we have hit the same node again. In this case, we choose to take back_path of the node
along with setting returning = true. Now what does this mean? When we start traveling
along the back_path of this node, we will again hit some node visited earlier. For this node,
the node that we visit just next, the path we took does not contain finish. So this path becomes
redundant for that node and we can simply forget that such a path existed for the node and
continue search over other unvisited paths. If it’s not clear, do not worry, an example at the
end of this chapter will make everything clear. With this we state,

Rule of thumb: Whenever we take back_path we set returning = true.

2.6 An Example 13

e U-TURN

Consider another simple situation given in figure 2.3. You come across a dead end while
exploring the maze. You have no choice but to take a U-turn.

Rule of thumb: Whenever we take a U-turn, we set returning = true.

If it doesn’t make sense to you, think about what returning variable tells you. It tells you
that the path doesn’t lead you to finish point and you can simple forget it. As we keep moving
after having taken the U-turn, we come across node 1 (a known or visited node as we call it)
, but we know returning = true, so the path in direction 0 or North pertaining to node 1
doesn’t contain the finish point. We can now explore remaining unvisited paths like in the
direction 3 or West pertaining to node 1 without worrying about this path.

2.6 An Example

Figure 2.4 depicts a portion of a maze. We hit a node 1 while exploring the maze, since this is a new
node for us we define it’s characteristics as below.

[En: [EL:

ON
1E

Z5

1T

Figure 2.4: An example for understanding prerequisites.

\\node 1

\\These paths exist for node 1

nodel.paths[2] = nodel.paths[3] = nodel.paths[1] = true;
\\We came by path 2

nodel.back_path = 2;

\\Marking path 2 as visited

nodel.vpath[2] = true;

Additionally we also set the x_cor and x_cor for node 1 using cur_x and cur_y which is not
written above. Also we assume that you update the bot_dir after every turn so it is not explicitly
mentioned here. We then take a right turn at node 1. The algorithm will be explained in detail in the
next chapter. For now assume that these are the decisions at the nodes. After we take right turn, we
mark the path as visited,

14 Chapter 2. Prerequisites for the Algorithm

nodel.paths[1] = true

and as we travel further we hit node 2. We define it’s characteristics as below and move straight
marking the corresponding path as visited.

node2.paths[1] = true

Recall that the corners are not nodes since we have no decision to make there.

\\node 2

\\These paths exist for node 2

nodel.paths[2] = nodel.paths[3] = nodel.paths[1] = true;
\\We came by path 3

nodel.back_path = 3;

\\Marking path 3 as visited

nodel.vpath[3] = true;

As we continue to move by following the line, we loop around and hit node 2 again. Which case
is this? Recall from section 2.4.3, this is the classical instance of RETURN-UKNOWN case as we
have revisited a node via an unknown path. We won’t explain what algorithm suggests to do at this
point of time but assume for now that we take a U-TURN in this case. Recalling our thumb rule for
U-TURN, we set,

returning = true;

Interestingly we again hit node 2, but this time in RETURN-KNOWN case. Hope you are able to
understand the two cases and how this example actually reflects them. Now that we are at node 2,
observe that all paths pertaining to node 2 have been visited. This is a classical instance where we
are forced to take back_path of node 2. So we continue to move straight, recalling our thumb rule
for BACK-PATH, we do not change the value of returning variable.

As we continue to move along the back path of node 2, we hit node 1, classical instance of
RETURN-KNOWN case. As we said in section 2.4.3, returning = true in this RETURN-
KNOWN case and so is it. Do you observe that now? Look how thumb rules for returning
variable and the RETURN-KNOWN and RETURN-UNKNOWN cases got intertwined.

Conclusion

This was all we had for you in this chapter. Hope you are clear with the two cases for matching
nodes and the the two rules of thumb mentioned in this chapter. In the next chapter, we will directly
jump onto the actual algorithm.

3.1

Running the algorithm

Without any delay, we start with an example maze and run the algorithm over it. We will explain the
decision that we make at each node as we traverse the maze. So let’s get started. The example maze
is shown in figure 3.1.

END

START

Om

Figure 3.1: An example MAZE for algorithm illustration.

Initializing the variables: We set the current x and current y coordinates to 0. Pointer variable
always points to one plus the number of nodes visited and remembered till now and bot direction is
set to 0. The returning variable is set to false initially. You can recall the definitions of these
variables from section 2.1.

int ptr = 1;

16 Chapter 3. The algorithm

int cur_x = 0;
int cur_y = 0;
bot_dir = 0;

returning = false;

Directions will be initialized with respect to the bot in the start position. So we mark and henceforth
refer to directions as in figure 3.2.

1E
ON 25
3w

Figure 3.2: Initialization of directions.

We move in the forward direction until we hit a node. We come across our first node and hence
define the characteristics of that node. The characteristics are self-explanatory. Notice that we also
increment the pointer variable.

END ———

1E
. ON 25

3w

START

—@—O

Figure 3.3: Marking node 1.

//node 1

//Marking the paths that exist for node 1

node[1] .path[0] = node[1].path[2] = node[1].path[1] = true
// We came by path in direction 2

node[1] .vpath[2] = true

//Marking the back path

node[1] .back_path = 2

node[1] .x_cor = cur_x

node[1].y_cor = cur_y

//Incrementing the pointer, ptr = 2 after incrementing

3.1 Running the algorithm 17

ptr = ptr +1
//marking the path we take at this node
node[2] .vpath[0] = true

We won’t state the marking of x and y coordinates for further nodes. It is assumed hereon that you
would be marking them accordingly. We hope the directions are making sense.

The direction of bot and current x and y coordinates of the bot are updated at each turn. We
don’t mention them here explicitly to keep the things simple. You can go back to chapter 2 to
recall how bot direction and coordinates of bot are updated.

Now we need to decide which path to choose to explore further. We decide the preference order
as S - straight, R - right and then L - left. This simply means that we will prefer moving straight if
such a path exists and is not visited, else we choose to go right or else left as the last option. You can
have any order as you want. It is not possible to correctly state which order or preference will give
you the most optimal path hence you can choose anything. As you would later see, choosing paths
randomly will be beneficial. But for understanding purpose we go with S, R and L. From node 1 we
go straight until we hit another node, we call it node 2. We also mark the path that we took as visited
for node 1.

We define the charcterisitics of node 2 and increment the pointer variable.

1E
. ON 25

3w

A
4 START

— —0—@ O

T

Figure 3.4: Marking node 2.

node[2] .path[0] = node[2].path[2] = node[2].path[1] = true
node[2] .vpath[2] = true

node[2] .back_path = 2

ptr = ptr +1 //ptr = 3 after incrementing

//marking the path we take

node[2] .vpath[0] = true

We again choose to move straight according to our preference order and mark this path as visited
for node 2. This time we come hit a corner and are forced to take a right turn. We keep traveling

18 Chapter 3. The algorithm

until we hit another node, we call it node 3.
The characteristics of node 3 are set as given.

node[3] .path[3] = node[3].path[2] = node[3].path[1] = true
node[3] .vpath[3] = true

node [3] .back_path = 3

ptr = ptr +1 //ptr = 4 after incrementing

//marking the path we take

node[3] .vpath[1] = true

We choose to move straight according to our preference and mark the path as visited. Last line
of the snippet does the same. We hit the corner and take a right turn. We move straight until we
come across another node, we call it node 4. We define it’s characteristics as below. Next we again
continue to move straight, mark the path as visited, we then hit a corner, take left turn and hit a dead
end. We have no choice but to take a U-TURN. Recall our thumb rule, we set returning = true
after every U-TRUN. Makes sense? The path in direction 2 for node 4 does not contain the finish
point, so we simply forget that such a path existed for node 2 and continue our search taking other
unvisited paths of node 4.

Hlftl

- l -—

END —

3 1E
ON 25

3w

START

@ @ O

2 1

Figure 3.5: Marking node 3 and 4.

node[4] .path[0] = node[4].path[2] = node[4].path[1] = true
node [4] .vpath[0] = true

node [4] .back_path = 0

ptr = ptr +1 //ptr = 5 after incrementing

//marking the path we took

node[4] .vpath[2] = true

We illustrated two cases when we revisit a node. Here returning = true, so this is the
classical instance of RETURN-KNOWN case we mentioned earlier. The decision to be made is
really simple in this case, we just choose the appropriate unvisited path of node 4, that’s what the
algorithm says in this case. If you are wondering how we came to know that we have hit node 4
particularly, then, that’s what we stored x_cor and y_cor for each node. Briefly speaking,

3.1 Running the algorithm 19

abs(node[4] .x_cor - cur_x) < epsilon &&
abs(node[4] .y_cor - cur_y) < epsilon

4
END 5
1E
3.‘_. J’ 0N 25
6 3w
e
l START
O O

Figure 3.6: Marking node 5 and 6, node 1 revisited in RETURN-UNKNOWN case.

So we see that the path in direction 3 is the only unvisited path. We take a left turn and mark this
path as visited and continue to explore further. Note that the pointer variable is still the same, we did
not increment it. Hence ptr is still 5.

node[4] .vpath[3] = true
But we must not forget to set returning back to false, as we have chosen an unvisited path!
returning = false

We hit another two nodes that is node 5 and node 6 and in both cases we choose to move straight
according to the preference order we decided marking the paths chosen as visited. The node
definitions of node 5 and node 6 are shown below.

\\node 5

node [5] .path[0] = node[5].path[1] = node[5].path[3] = true
node [5] .vpath[1] = true

node[5] .back_path = 1

ptr = ptr +1 //ptr = 6 after incrementing

//marking the path we take

node[5] .vpath[3] = true

\\node 6

node[6] .path[0] = node[6].path[1] = nodel[6].path[3] = true

node[6] .vpath[1] = true

node[6] .back_path = 1

ptr = ptr +1 //ptr = 7 after incrementing
//marking the path we take

node [6] .vpath[3] = true

20 Chapter 3. The algorithm

We keep moving straight until we hit some node. Not surprisingly, we hit a node we had
already visited earlier but also in this case returning = false. This is the classical instance of
RETURN-UNKOWN case we mentioned earlier. The decision to be made is pretty different from all
earlier cases. What should we do now? Before taking any decision we should keep in mind that there
are still paths which we did not visit pertaining to nodes we visited earlier. Ex. path in direction O
pertaining to node 5 and path in direction 1 pertaining to node 2. So, according to the algorithm,
when we hit such a node, precisely we hit a known node in RETURN-UNKNOWN case, we take a
look at all the paths starting from this known node (node 1 in this case) to the node currently pointed
to by ptr-1.

ptr always points to node+1.

Accordingly we check all paths corresponding to nodes starting from node 1 (matched node) to node
6 (ptr-1) . This the only range of nodes we check unvisited paths for, that is from node 1 to node
6. If there exist any unvisited paths, we take a U-TURN according to our algorithm. Do they exist
here? Yes, in direction 2 pertaining to node 3 and many others as we mentioned earlier. We take
U-TURN, but remember what our thumb rule said, we set returning = true.

Assume if such unvisited paths did not exist, then what should we do? Yes, as you might
have guessed, we need not visit those nodes again as they do not lead us to finish, we then set the
ptr variable to currently matched node, 1, in this case and try choosing some other unvisited path
pertaining to node 1. It’s important to note that we took a U-TURN since we had some paths which
we did not visit.

Take a close look at the maze diagram shown in figure 3.7. Notice particularly the paths which are

Figure 3.7: node 2 and node 6 revisited in RETURN-UNKOWN and RETURN-KNOWN case
respectively.

crossed in blue! Yes, does it make sense? These are the two paths for which returning was true and
we simply forgot that such paths ever existed in our maze! Why? Because they never lead us to finish.
‘We have now hit a matched node, which case? RETURN-KNOWN case. What do we do? Take
some unvisited path pertaining to node 6, so we take path in direction 0 which is the only unvisited
path. Don’t forget that we set returning = false once we take this unvisited path and also mark
node [6] .vpath[0] = true. Ahh...we again hit a node which we had already visited. Which case?

3.1 Running the algorithm 21

Yes, RETURN-UNKNOWN case where returning = false. We check if there are any unvisited
paths starting from node 2 (matched node) to node 6 (ptr-1). We have not visited many paths yet,
although one less than earlier. We take a U-TURN, set returning = true according to our thumb
rule. So this path corresponding to node 6 gets crossed.

We have again hit a known node, RETURN-KNOWN case, returning = true. But this time,
it’s a bit different. Can you guess it? We are left with no unvisited paths for node 6. We take the
back_path for node 6. Are we forgetting something? thumb rule: Whenever we take back_path
we set returning = true. There you go, we keep moving in direction 1 from node 6 setting
returning = true. One important thing we would like to state here is that node 6 will never be

END 5
.‘_
3 4 1E
. . oN 25
] iw
START
2 1

Figure 3.8: node 5 revisited

revisited again for two reasons: 1) We have already explored all paths pertaining to node 6 and 2)
We took the back path for the same reason from node 6. How do we put this thing into our code?
Decrement the pointer variable! So node 6 is no more a node in the maze for us, why? Look all its
paths are crossed in the figure 3.8.

ptr = ptr -1 // ptr = 6 after decrementing, forgot node 6

Next we revisit Node 5, RETURN-KNOWN case, choose unvisited path in direction 0. Set
returning = false as we choose an unvisited path. Having taken the left turn at node 5, we hit
a dead end and are forced to take a U-TURN, setting returning = true. We revisit node 5 in
RETURN-KNOWN case, but again all paths pertaining to node 5 are already visited this time, so
we take back path for node 5. returning variable is unchanged since we are taking back path and
returning = true already. We can now safely cross over these two paths too, since they do not
lead us to finish. We reach node 4, RETURN-KNOWN case, returning = true, all paths have
already been visited, we take back path for node 4. We can safely cross over this path from node 5 to
node 4. The figure 3.9 depicts the same. Again for node 5 like node 6, we have crossed all paths and
we are not gonna visit node 5 again. So we decrement the pointer variable.

ptr = ptr -1 \\ ptr = 5 after decrementing, forgot node 5

We hit node 3, RETURN-KNOWN case, returning = true, we cross over the path from node 4
to node 3, decrement ptr and take an unvisited path from node 3.

22 Chapter 3. The algorithm

END

Figure 3.9: node 4 revisited

ptr = ptr -1 \\ ptr = 4 after decrementing, forgot node 4

Bingo! There you are................. Finished! What’s important here is that the value of ptr is exactly
equal to the number of nodes in the optimal path that lead us to finish!

Figure 3.10: node 3 revisited

The blue crossed portion corresponds to the those paths that do not lead us to finish. Thus we
have successfully explored the maze and now we know the optimal path to finish. This completes the
run of our algorithm on this maze. To recall, whenever we hit a node in RETURN-KNOWN case,
two things can happen, there are some unvisited paths for the node or there aren’t. If there are some
unvisited paths, we choose them according to our preference order and if there aren’t then we take
the back path for the node. Secondly, if we hit a node in RETURN-UNKOWN case, we check for all
paths starting from this node that got matched and the node pointed to by ptr-1. If there exist any
unvisited paths for any of the nodes in this range, we take a U-TURN, else we set our ptr variable to
this node+1, and try choosing some unvisited path for this node. If no unvisited path exists, we take
the back path. This summarizes our algorithm. In section 3.2, we show you how to take the optimal
path as a part of round 2 of our competition. We also present the pseudo code in the section 3.3.

3.2 The Optimal Path

23

3.2 The Optimal Path
Coming up shortly....!

3.3 Pseudo Code
Coming up shortly....!

g the Bot

4.1 Gathering the materials
Coming up shortly....!

4.2 The bot design

Explain about the two bot designs that we thought of, 1) placing the sensor array in front of the bot
and 2) placing the sensor array at the center of the bot. Explain the advantages and disadvantages
too.

4.2.1 IR in-front design
4.2.2 IR-centered design
Coming up shortly....!

4.3 Configuring the IR sensor array
Coming up shortly....!

4.4 Teaching bot to take turns

Explanation about the ways to take turn like rotating both wheels or a single wheel, etc. Best way to
take a U-TURN and it’s calibration.

4.4.1 LEFT-TURN and RIGHT-TURN
4.4.2 U-TURN
Coming up shortly....!

Wish you all the best, Andrea Hidalgo

	Introduction
	Problem Statement
	Maze varieties and Existing Algorithms
	How to read this book?

	Prerequisites for the Algorithm
	Getting the tools ready
	Directions
	Defining directions
	Updating directions

	The Coordinate System
	Nodes
	Node definition
	Node characteristics
	Matching Nodes

	The Returning Variable
	An Example
	Conclusion

	The algorithm
	Running the algorithm
	The Optimal Path
	Pseudo Code

	Making the Bot
	Gathering the materials
	The bot design
	IR in-front design
	IR-centered design

	Configuring the IR sensor array
	Teaching bot to take turns
	LEFT-TURN and RIGHT-TURN
	U-TURN

