
Prioritizing Github Issues∗

Akash Dhasade
Indian Institute of Technology, Tirupati

tee15b007@iittp.ac.in

K.S.S Bhargav
Indian Institute of Technology, Tirupati

tcs15b015@iittp.ac.in

Vanka Sai Sumanth
Indian Institute Of Technology, Tiruapati

tcs15b029@iittp.ac.in

Dr. Sridhar Chimalakonda
Indian Institute of Technology, Tirupati

ch@iittp.ac.in

ABSTRACT
Issues on github are a common mode of tracking bugs in software
projects . Integrators face challenges with regards to prioritizing
work in the face of concurrent issues. We present the design and
implementation of Issue-Prioritizer, a tool to prioritize issues based
on machine learning techniques. Issue-Prioritizer works like a pri-
ority inbox for issues, recommending top issues the user should
focus on based on his/her own priorities which can be set through
some parameters.

CCS CONCEPTS
• Machine learning; • Supervised Learning; • Natural Lan-
guage processing; • Software Engineering; • Software Archi-
tecture;

KEYWORDS
Github, Issues, prioritisation, ensemble methods,latent dirichlet
allocation, dynamic tracking

ACM Reference Format:
Akash Dhasade, K.S.S Bhargav, Vanka Sai Sumanth, and Dr. Sridhar Chi-
malakonda. 2018. Prioritizing Github Issues. In Proceedings of ACM Con-
ference (Conference’17), Jennifer B. Sartor, Theo D’Hondt, and Wolfgang
De Meuter (Eds.). ACM, New York, NY, USA, Article 4, 4 pages. https:
//doi.org/10.475/123_4

1 INTRODUCTION
Issues are user reports which are reported when a problem is faced.
Issues are used to keep track of tasks, enhancements, and bugs for
software projects on github [1]. Issues on github are characterized
by their titles, description,labels, assignees and comments. Issues
define some of the milestones of the project. At any given point
of time, software repositories of considerable size have hundreds
of open issues which the integrators need to inspect and resolve.
For example, the tensorflow repository has more than 1000 issues
open at any point in time.The github interface for issues allows
developers to sort open issues on a multitude of criteria, ranging

∗Produces the permission block, and copyright information

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
Conference’17, July 2017, Washington, DC, USA
© 2018 Copyright held by the owner/author(s).
ACM ISBN 123-4567-24-567/08/06. . . $15.00
https://doi.org/10.475/123_4

from the age of issue to recently updated issues. However, the
integrators still face challenges with regards to prioritizing work in
the face of concurrent issues. In this paper, we present the design
and implementation of issue prioritization tool, the Issue-Prioritizer.
The Issue-Prioritizer acts as a priority inbox for issues. It examines
all open issues and presents the top issues that need immediate
attention to the project integrators. Issue-Prioritizer is a dynamic
tool that reacts to real time changes in the state of issues.

2 PRIORITIZING ISSUES
2.1 Model
We model our tool similar to the pull request prioritization tool
called the PRioritizer [2] and using a priority inbox approach. We
not only look at static information with regards to issues but also
take into account (the dynamics of) previous actions on issues. We
prioritize issues based on three criteria:

• Issue Lifetime predicted via machine learning techniques
• Hotness of the issue
• Category of the issue

G. Gousios, A. Zaidman, M.-A. Storey, and A. van Deursen [3]
analyzed work practices and challenges in pull based development
from an integrators’s perspective and found out that integrators
prioritize contributions by examining their criticality (in case of bug
fixes), their urgency (in case of new features) and their size. Issue
lifetimes are indicative of the criticality of fix and their urgency.
We train a machine learning algorithm on historical data to build a
model for predicting the closing dates of currently open issues.

PRioritizer [2], tool to prioritize pull requests does not take into
account the liveness and asynchrony of pull requests. Essentially,
high recent activity on the issue is indicative of the fact that the
issue is currently trending and should be looked over (if not always).
We take into account the recent activity on the issue by measuring
the hotness of the issue following a model similar to YOUTUBE
trending videos [4]. The method for measuring hotness and features
used are explained in the following section.

Category of contributions plays an important role where inte-
grators prefer looking at some categories of Issues over others[3].
Category of the Issue is identified by the title of the issue and its
description i.e the first comment in the thread of the issue. If the
issue is regarding a bug that is causing crashes it is more important
than a issue which demands for a new feature to be added. The
feature may be essential but it is certainly not as important as the
former. So we need to identify to which category the issue belongs
to. This is done using a tool in Natural Language Processing called
Latent Dirichlet Allocation(LDA).

https://doi.org/10.475/123_4
https://doi.org/10.475/123_4
https://doi.org/10.475/123_4

Conference’17, July 2017, Washington, DC, USA Akash.D et al.

2.2 Features
The features set was extracted considering all possible data associ-
ated with an issue. These features are very similar to the features
used for prioritizing pull requests (E.Van & et al., 2015). An overview
of selected features is summarized in Table 1.

One of the most critical parameters in prioritizing issues is the
author of the issue. The author could be the project owner, a project
member, project contributor or any other third person. The owner of
the repository raising an issue is more important than a third person
raising one. Developers also deem the age of the issue important: we
measure it as the elapsed time in days since the issue was created.
Number of comments and labels on the issues such as ’awaiting
response’ are indicative of recent activity and current state of issue
respectively. The title and description are used to analyze category
of the issue. Number of assignees is indicative of the urgency of fix.

We classify the features as being static and dynamic. The features
whose values once specified do not change (or hardly change) with
time are called as static features while the features whose values
keep on changing (or frequently change) with time are called as
dynamic features. Examples of each category are assignees and
comments respectively. Assignees once assigned by the developer
look over the issue throughout its lifetime but might change over
time in rare cases. Comments are a good measure of recent activity
on the issue and keep changing frequently with time.

3 DESIGN AND IMPLEMENTATION
The Issue-Prioritizer is implemented in Java and forms a loosely
coupled architecture with the following measure components: (1)
Watcher (2) Analyzer (3)Predictor and (4) Visualizer. The architec-
ture diagram can be seen in Figure 1. Each of the components is
detailed next.

3.1 Watcher
It is responsible for keeping track of new issues and state changes
in the old issues. It maintains a time stamp of last updated time and
SQL tables corresponding to issues, comments and labels for a repos-
itory. This storage of data is crucial for quick retrieval of issues in
later stages of calculation and it takes place when Issue-Prioritizer is
setup for the first time. Next time when watcher is called, it scrapes
the only those issues which have been updated/added/closed after
the last time stamp. All data retrieval is done using github API v3.

3.2 Analyzer
It is responsible for extracting the required data from the SQL
database of issues and evaluating metrics required for priority cal-
culation.

3.3 Predictor
The metrics evaluated by analyzer and other required data are then
passed to the predictor which uses the trained machine learning
model to predict close dates. It then evaluates the final prioritizes of
all open issues passes the list of prioritized issues to the visualizer.

Figure 1: Issue-Prioritizer Architecture

Figure 2: First view of Issue-Prioritizer

3.4 Visualizer
Visualizer presents the list of issues, enriched with information
extracted from the analysis and prediction phases. A screenshot of
the visualizer (and the tool) can be seen in Figure 3.

4 PRIORITIZATION CRITERIA
We prioritize issues based on three criteria: lifetime of the issue
predicted via machine learning techniques, hotness of the issue and
category of the issue. The process of calculation of each of them is
presented next.

4.1 Lifetime of the Issue
We predict the lifetime of the issue in days using three of the above
features: number of assignees, number of comments and author
association of the issue. Choice of these features from all available
set of features is intuitive from the fact that more the number of

Prioritizing Github Issues Conference’17, July 2017, Washington, DC, USA

Table 1: Issue features and their nature

Feature Description Type
Author of issue Is the author a project member? Static
Comments Number of discussion comments Dynamic
Assignees No of assignees to look over the issue Static

Title and description The text associated with issue title and description Static
Labels The type and number of labels assigned to the issue Static
Age Days between creation of issue and current time Dynamic

assignees, faster will the issue be closed. Likewise, an issue with
author as a project member is more likely to get closed than the
issues with authors who are non members. The choice of these
features is not exclusive but is subject to trial.

The closing time of the issue was categorized into 5 classes hav-
ing analyzed the plot of number of issues vs closing time of issues
for the tensorflow repository on github [5]. The plot is presented in
Figure 2. We observed that a lot of issues get resolved within first
two days, while the maximum that any issue was not resolved was
around 80 days. The five classes for closing time with associated
number of days are presented in Table 2.

The accuracies of the models trained are presented in Table 3.
The issue dataset comprised of 1039 closed issues corresponding
to the tensorflow repository on github. The decision tree classifier
and Support Vector Machine performed better than other classifiers
with accuracy of 54%. A soft voting ensemble was made out of them
which achieved an accuracy score of 55.769%.

4.2 Hotness of the issue
The model used for measuring hotness of the issues resembles
the one used to find out trending videos on YOUTUBE[4]. Table 4
compares the parameters used in both models.

We use four features formeasuring hotness: comments, assignees,
author-association and label. We deteriorate the weight of each
instance of a feature with time such that the contribution of that

Figure 3: Lifetime vs Frequency of Issues

Table 2: Close time class

Days Class Number
0 - 2 Class 0
3 - 7 Class 1
8 - 14 Class 2
15 - 28 Class 3
> 28 Class 4

Table 3: Machine learning models and their accuracies

Classifier Accuracy Score (%)
Logistic Regression 52.88

Decision tree (max depth 2) 54.80
Random Forest 49 - 51

SVM 54.807
Ensemble 54.807

instance in determining total priority decreases as the age of fea-
ture instance increases. Static features are the features which stay
intact throughout the life time of issue while dynamic features keep
changing with time. Hence, we deteriorate the contribution from
static features slowly as compared to that of dynamic features in
hotness calculation. Log with base 2 deteriorates static features
while log base 10 in used for deteriorating dynamic features. The
formula for measuring hotness can be stated as:

hotness =
∑ wcomment

ln(2 + (t − t0))
+
∑ wassiдnees

loд10(2 + (t − t0))
+

authAssoc

loд10(2 + (t − t0))
+
∑ wlabel

loд10(2 + (t − t0)))

Table 4: Model similarity - Youtube trending videos & Issue-
Prioritizer

Youtube trending vidoes Issue-Prioritizer
Age of video Age of issue

Growth rate of views Growth rate of comments
Where are view s coming from? Author of comment

View count Comment and label count

4.3 Category of the issue
We need to identify the category of the issue, as some category of
issues are more crucial to resolve immediately than others. For ex-
ample an issue regarding a bug that is causing crashes would need

Conference’17, July 2017, Washington, DC, USA Akash.D et al.

Table 5: Category wise priority assignments

Category of the Issue Priority
fix 3

error 2
update 1

an immediate attention. Where as an issue demanding a feature
addition is atleast not as important as the former. Hence it is neces-
sary to identify the issue category. We can apply machine learning
to do this. But what tool in machine learning is an elegant way?
If we have to do supervised learning, we need a labeled dataset
which is not available. We could just hand label the issues which is
possible but is a clumsy and tiring way. So we decided upon using
unsupervised learning to do this. We used latent dirichlet allocation
technique of natural language processing to do this. Latent dirichlet
allocation or LDA scans through a corpus of the documents as many
times as the number of iterations parameter and outputs the topics
in the corpus. LDA is a bag of words model, meaning it disregards
grammar, word order but keeps the multiplicity of each word. Be-
fore running LDA, the stop words, punctuation marks are removed
from the corpus. Then the words are lemmatized .Thus corpus is
made into a clean document term matrix which is passed into LDA.
Each document is made of topics which are to be discovered. Each
topic is made of words which occur with a certain probability in
that topic. The following categories have been identified by running
LDA on tensorflow issues.

(0,′ 0.044 ∗ ”f ix” + 0.008 ∗ ”mkl”′) (1)

(1,′ 0.017 ∗ ”branch” + 0.014 ∗ ”update”′) (2)

(2,′ 0.025 ∗ ”tensor f low” + 0.017 ∗ ”error”′) (3)
The priority assigned to each category is shown in Table 5. We
observe that some of the topics turned out to be tensorflow specific.
This is because LDA was trained on tensorflow issues. We need to
fix this by training on a larger dataset of issues.

4.4 Final priority calculation
The final priority is the weighted sum of its components. It is given
by

priority =
WcloseT ime

(closeTime + 1) +Whotness ∗ hotness +

WCateдory ∗CateдoryPriority

We leave the choice of assigning these weights to the user because
strictly speaking, priority is a subjective thing. One may feel that
an issue which is hot must be given high priority while other might
think the issue which closes first needs to be attended first. Hence
the user can adjust the weights based on whats more important to
him. Thus the tool can be personalized based on the requirement
of the user.

5 FUTUREWORK
This can be considered as being only the first stage of the tool. A lot
more need to be done. Firstly we need to train the machine learning

model on a larger dataset. We also need to our machine learning
model to be dynamic and adapt itself so that it becomes repository
specific. We need to build an online model so that it gets trained
and adapts as and when a new issue enters a repository. For this
we need to run the model on a server. We are also planning on
building a github extension for our tool so that it can reach to a
large number of audience.

6 CONCLUSION
Our tool the issue prioritizer considers almost everything that need
to be considered regarding thee issue. Priority is a subjective thing.
But here we give the user the option to assign weights to each of
the components that make the total priority. Hence it reduces the
burden of manual sorting the issues by members to a large extent.
We are hopeful that our tool would turn out to be of great use to
developers in the near future.

REFERENCES
[1] https://guides.github.com/features/issues
[2] Automatically Prioritizing Pull Requests, Erik van de Veen, Georgios Gousios

and Andy Zaidman in the Proceedings of 12th Working Conference on Mining
Software Repositories, 2015

[3] G. Gousios, A. Zaidman, M.-A. Storey, and A. van Deursen, âĂĲWork practices
and challenges in pull-based development: The integrator âĂŹs perspective,âĂİ
in Proceedings of the 37th International Conference on Softw are Engineering
(ICSE), 2015.

[4] https://support.google.com/youtube/answ er/7239739?hl=en
[5] https://github.com/tensorflow /tensorflow

	Abstract
	1 Introduction
	2 Prioritizing Issues
	2.1 Model
	2.2 Features

	3 Design and Implementation
	3.1 Watcher
	3.2 Analyzer
	3.3 Predictor
	3.4 Visualizer

	4 Prioritization Criteria
	4.1 Lifetime of the Issue
	4.2 Hotness of the issue
	4.3 Category of the issue
	4.4 Final priority calculation

	5 FUTURE WORK
	6 Conclusion
	References

